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ABSTRACT
This article focuses on the parameter estimation of experimental
items/units from Weibull Poisson Model under progressive type-
II censoring with binomial removals (PT-II CBRs). The expecta-
tion–maximization algorithm has been used for maximum likeli-
hood estimators (MLEs). The MLEs and Bayes estimators have been
obtained under symmetric and asymmetric loss functions. Perfor-
mance of competitive estimators have been studied through their
simulated risks. One sample Bayes prediction and expected experi-
ment time have also been studied. Furthermore, through real blad-
der cancer data set, suitability of considered model and proposed
methodology have been illustrated.
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1. Introduction

TheWeibull PoissonModel (WPM) is one of the recent compounding of twomost greeted
probability distributions, i.e. Weibull and zero-truncated Poisson distribution. This distri-
bution was pioneered by Lu and Shi [19]. The cumulative distribution function (CDF) of
WPM with (α,β , λ) is

F(x) = eλe−βx
α − eλ

1 − eλ
; α > 0, λ > 0, β > 0, x > 0. (1)

The probability density function (pdf) is given by

f (x) = αβλe−λ

1 − e−λ
e−βx

α

xα−1 eλe
−βxα

; α > 0, λ > 0, β > 0, x > 0, (2)

where α and β are the shape and scale parameters ofWPM, while λ is the rate parameter
of zero-truncated Poisson distribution.
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This model has an edge over other Poisson-based distributions like Poisson-gamma,
Poisson-log normal, etc. in the sense that it covers all types of failure rates encountered in
life-testing experiments, see Gonzales-Barron and Butler [11].

We may note here, a typical feature of life-testing experiments is censoring because sit-
uations do arise when items/units are lost or removed from the experiment while they
are alive; i.e. quite often, it is very difficult to get failure times of all the items/units put
on test owing to various constraints related to time, cost and other resources. Type-I cen-
soring takes place when experimental time is fixed and hence number of failures become
random. While type-II censoring occurs when the number of failures is fixed, but experi-
mental time remain random. Even under these conditions, some items/units may drop out
of the experiment randomly due to some unknown causes, which are beyond the control of
the experimenter. For example, consider that a medical experiment starts with n patients
but after the death of first patient, some patients who are alive leave the experiment and go
for treatment elsewhere. Similarly, after the death of second patient, a few more are leave
and the process continues till predetermined number of failure (saym < n) are recorded. It
may be assumed here that at each stage participating patient may independently decide to
leave the experiment with probability p. Thus the number of patients who leave the exper-
iment at a specified stage will follow binomial distribution with probability p. It may be
argued at this stage that probability pmay vary at each stage. But for the sake of simplicity,
we shall assume that p is same at each stages. Collecting information in this way results to
a censored sample and the sampling technique used is called as PT-II CBRs. The mathe-
matical formulation of PT-II CBRs is presented in the next section. For details, one can see
Balakrishnan and Sandhu [3] and Balakrishnan and Aggarwala [2].

In the past few decades, estimation of parameters of the Weibull lifetime models based
on progressive type-II, PT-II CBRs and optimal progressive censoring samples have been
studied by several authors such as Balasooriya et al. [4], Tse et al. [30], Tang et al. [28] and
Ng et al. [21], etc. Estimation of parameters for InverseWeibull distribution have been dis-
cussed by Sultan et al. [27]. And for other lifetimemodels by Soliman et al. [26], Singh et al.
[23], Kumar et al. [14–17], etc. But, it seems as if no attempt has beenmade to develop esti-
mators for the parameters ofWPM under PT-II CBRs; although estimation of parameters
under classical set up has been attempted by Lu and Shi [19].

Therefore, we propose to develop an estimation procedure to obtain the MLEs (using
Expectation–Maximization (EM) algorithm) and Bayes estimators of the parameters of
WPM under symmetric and asymmetric loss functions when sample is obtained by the use
of PT-II CBRs. An important feature of this article is to develop the required mathematics
for PT-II CBRs, EM algorithm alongwith its application to the bladder cancer patients data
(remission time in months).

Rest of the paper consists of seven more sections. Section 2 provides the classical
and Bayesian estimation procedure under PT-II CBRs for the parameters of WPM and
likelihood ratio (LR) test is applied for checking the goodness-of-fit. The EM algorithm
is proposed to be used to obtain the MLEs. Bayes estimators under symmetric and asym-
metric loss functions have been obtained. The Bayes prediction for one sample has been
discussed in Section 3. Expression for expected experiment time has been obtained in
Section 4. Comparisons of risks of the estimatorswith correspondingBayes estimators have
been made through Monte Carlo simulation studies and the related discussions are pre-
sented in Sections 5 and 6. The proposed methodology is illustrated in Section 7 through
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a real data of remission time (in months) of bladder cancer patients, after checking the
suitability ofWPM for it. In the last section, we have provided the conclusion and remarks.

2. Classical and Bayesian estimation under PT-II CBRs

Let us assume that an experimenter conducts a life-testing experiment with n items/units
and decides to terminate the experiment as soon as m failure times are recorded. At first
failure observed at X1, R1 out of the n−1 surviving items/units are randomly removed
from the experiment and the experiment continues. Similarly, at second failure observed
X2, R2 of the remaining n − R1 − 2 surviving items/units are again randomly removed
from the experiment and in a similar way the experiment continues till the mth failure is
recorded and at this stage all the remaining (n − m − ∑m−1

i=1 Ri = (Rm)) surviving items
units are removed resulting to termination of the experiment. Since, Ri at ith stage is the
total removal out of surviving units, each experiencing the risk of removal with probability
p; it is a random variable following the binomial distribution B(n − m − ∑m−1

i=1 Ri, p). For
details see. Viveros and Balakrishnan [31] and Ng et al. [21]. Following Cohen [8] for fixed
removals, sayR1 = r1,R2 = r2,R3 = r3, . . . ,Rm = rm, the conditional likelihood function
can be written as,

L(α,β , λ; x|R = r) = c
m∏
i=1

f (xi)[1 − F(xi)]ri ; −∞ < x1 < · · · < xm < ∞, (3)

n,m ∈ N, 1 ≤ i ≤ m and c = ∏m
i=1 γi where γi = ∑m

j=1(rj + 1). Substituting f (xi) and
F(xi) from (1) and (2) into (3), we have

L(α,β , λ; x|R = r) = c
m∏
i=1

αβλxα−1
i

1 − e−λ
e−λ−βx

α
i +λe−βxαi

⎧⎨
⎩1 − eλe

−βxαi

1 − eλ

⎫⎬
⎭

ri

. (4)

As mentioned earlier, the number of items/units removed from the experiment is random
and independent of each other; therefore

p(R1 = r1; p) =
(
n − m
r1

)
pr1(1 − p)n−m−r1 (5)

and for i = 2, 3, . . . ,m − 1

p(Ri; p) = p(Ri = ri|Ri−1 = ri−1, . . .R1 = r1)

=

⎛
⎜⎝n − m −

i−1∑
l=0

rl

ri

⎞
⎟⎠ pri(1 − p)n−m−∑i−1

l=0 rl . (6)

Hence, likelihood function can be written as

L(α,β , λ, p; x) = L(α,β , λ; x|R = r)p(R = r; p) (7)

where,

p(R = r; p) = p(R1 = r1)p(R2 = r2|R1 = r1)p(R3 = r3|R2 = r2,R1 = r1) · · ·
p(Rm−1 = rm−1|Rm−2 = rm−2, . . .R1 = r1). (8)
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Substituting from (5) and (6) into (8), we have

p(R = r; p) = (n − m)!p
∑m−1

i=1 ri(1 − p)(m−1)(n−m)−∑m−1
i=1 (m−i)ri

(n − m − ∑i−1
l=1 rl)!

∏m−1
i=1 ri!

, (9)

now using (4), (7) and (9), the complete likelihood can be expressed in the following form,

L(α,β , λ, p; x) = �L1(α,β , λ)L2(p)

where,

� = c(n − m)!
(n − m − ∑i−1

l=1 rl)!
∏m−1

i=1 ri!
,

L1(α,β , λ) = c
m∏
i=1

αβλxα−1
i

1 − e−λ
e−λ−βx

α
i +λe−βxαi

⎧⎨
⎩1 − eλe

−βxαi

1 − eλ

⎫⎬
⎭

ri

,

L2(p) = p
∑m−1

i=1 ri(1 − p)(m−1)(n−m)−∑m−1
i=1 (m−i)ri . (10)

Now, MLEs of α,β and λ are computed by maximizing L1 and MLE of p by maximizing
L2. Taking log of both sides to (10), we get

l1(α,β , λ) = ln(L1(α,β , λ)) = m lnα + m lnβ + m ln λ

+ (α − 1)
m∑
i=1

ln xi − mλ− β

m∑
i=1

xαi − m ln(1 − e−λ)

+ λ

m∑
i=1

e−βx
α
i +

m∑
i=1

ri(ln(eλe
−βxαi − 1)− ln(eλ − 1)). (11)

Differentiating (11) with respect to α,β and λ and equating them to zero, we obtain fol-
lowing three normal equations. A simultaneous solution of these provide MLEs of the
parameters.

∂ l1(α,β , λ)
∂α

= m
α

+
m∑
i=1

ln xi − β

m∑
i=1

xαi ln xi − λβ

m∑
i=1

e−βx
α
i (xαi ln xi)

+
m∑
i=1

ri

⎡
⎣λe−βxαi eλe−βxαi

1 − eλe
−βxαi

βxαi ln xi

⎤
⎦ = 0, (12)

∂ l1(α,β , λ)
∂β

= m
β

−
m∑
i=1

xαi − λxαi
m∑
i=1

e−βx
α
i +

m∑
i=1

ri

⎡
⎣λe−βxαi eλe−βxαi

1 − eλe
−βxαi

xαi

⎤
⎦ = 0, (13)

∂ l1(α,β , λ)
∂λ

= m
λ

− m −
m∑
i=1

e−βx
α
i − me−λ

1 − e−λ
−

m∑
i=1

ri

⎡
⎣eλe

−βxαi −βxαi

1 − eλe
−βxαi

− meλ

1 − eλ

⎤
⎦ = 0.

(14)
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Unfortunately, (12)–(14) cannot be analytically solved simultaneously. Hence we propose
the use of numerical iterative procedure, namely, Newton–Rapson method for solving
these. The numerical procedure used here for obtaining the iteration function and the
choice of initial guesses is based on maximum absolute row sum norms, which has been
discussed by Jain et al. [12]. The expectation maximization algorithm has been proposed
in this article to get the MLEs of α,β and λ. Because, EM algorithm is deterministic
optimization technique and can be used for missing and incomplete data. Therefore, the
EM algorithm is more suitable alternative approach to existing other numerical methods.
This algorithm was introduced by Dempster et al. [9] and for its detail see Krishnan and
McLachlan [13]. Let Zik be the unobserved observation for the kth items/units moved
out of the experiment at the time of observing ith removal at time Xi; i = 1, 2, . . . ,m
and k = 1, 2, . . . , ri. Thus, the observed Xi’s and Zik’s form the complete data. Hence the
complete likelihood is

L(α,β , λ) =
m∏
i=1

[
αβλxα−1

i
1 − e−λ

e−λ−βx
α
i +λe−βxαi

ri∏
k=1

αβλzα−1
ik

1 − e−λ
e−λ−βz

α
ik+λe

−βzαik
]
.

The log-likelihood function is as follows

ln L(α,β , λ) = n ln(α)+ n ln(β)+ n ln(λ)− nλ− n ln(1 − e−λ)

+ (α − 1)
m∑
i=1

ln xi − β

m∑
i=1

xαi + λ

m∑
i=1

e−βx
α
i

+ (α − 1)
m∑
i=1

ri∑
k=1

ln zik − β

m∑
i=1

ri∑
k=1

zαik + λ

m∑
i=1

ri∑
k=1

e−βz
α
ik . (15)

Hence, MLEs of the parameters are obtained the simultaneous solution of the following
three nonlinear equations

∂ ln L(α,β , λ)
∂α

= n
α

− αβ

m∑
i=1

xα−1
i − αβλ

m∑
i=1

xα−1
i e−βx

α
i +

m∑
i=1

ln xi

− αβ

m∑
i=1

ri∑
k=1

zα−1
ik − αβλ

m∑
i=1

ri∑
k=1

zα−1
ik e−βz

α
ik

+
m∑
i=1

ri∑
k=1

ln zik = 0, (16)

∂ ln L(α,β , λ)
∂β

= n
β

−
m∑
i=1

xαi − λ

m∑
i=1

xαi e
−βxαi −

m∑
i=1

ri∑
k=1

zαik

− λ

m∑
i=1

ri∑
k=1

zαike
−βzαik = 0, (17)



JOURNAL OF APPLIED STATISTICS 931

and

∂ ln L(α,β , λ)
∂λ

= n
λ

− n + ne−λ

(1 − e−λ)
+

m∑
i=1

e−βx
α
i +

m∑
i=1

ri∑
k=1

e−βz
α
ik = 0. (18)

Now, to perform the EM algorithm, joint distribution of x and z can be written as follows:

f (x, z;α,β , λ) = P(z; λ)f (x|z;α,β),

where,

P(z; λ) = e−λλz

z![1 − e−λ]
; λ > 0, z = 1, 2, 3, . . . .

Since, the conditional pdf is

P(z|x;α,β , λ) = f (x, z;α,β , λ)
f (x; λ)

= αβzxα−1e−βzx
α

λz�−1(z + 1)(eλ − 1)−1; z = 1, 2, 3, . . . , (19)

where, α > 0,β > 0 and λ > 0. The E-step of EM algorithm needs the computation of
the conditional expectation (Z|X,αt ,β t , λt), where, (αt ,β t , λt) is the current estimates of
(α,β , λ). Hence from (19), we get

E(z|x;αt ,β t , λt) = (1 + λte−β
txα

t
).

The EM algorithm is completed with M-step, with complete data, where missing Z’s are
replaced by their conditional expectations (Z|X,αt ,β t , λt). Thus, an EM iteration, takes
(αt ,β t , λt) into (αt+1,β t+1, λt+1) obtained from the following

∂ ln L(α,β , λ)
∂α

= n
α

− αβ

m∑
i=1

xα−1
i − αβλ

m∑
i=1

xα−1
i e−βx

α
i

+
m∑
i=1

ln xi − αβ

m∑
i=1

ri∑
k=1

(1 + λte−β
txα

t
i )α−1

− αβλ

m∑
i=1

ri∑
k=1

(1 + λte−β
txα

t
i )α−1e−β(1+λ

te−β
txα

t
i )α

+
m∑
i=1

ri∑
k=1

ln(1 + λte−β
txα

t
i ) = 0,

∂ ln L(α,β , λ)
∂β

= n
β

−
m∑
i=1

xαi − λ

m∑
i=1

xαi e
−βxαi −

m∑
i=1

ri∑
k=1

(1 + λte−β
txα

t
i )α

− λ

m∑
i=1

ri∑
k=1

(1 + λte−β
txα

t
i )αe−β(1+λ

te−β
txα

t
i )α = 0,
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and

∂ ln L(α,β , λ)
∂λ

= n
λ

− n + ne−λ

(1 − e−λ)
+

m∑
i=1

e−βx
α
i +

m∑
i=1

ri∑
k=1

e−β(1+λ
te−β

txα
t

i )α = 0.

The iterative procedure obtained for EM algorithm is given below

αt+1 = n⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αβ
∑m

i=1 x
α−1
i + αβλ

∑m
i=1 x

α−1
i e−βxαi − ∑m

i=1 ln xi
+αβ∑m

i=1
∑ri

k=1 (1 + λte−βtxα
t

i )α−1

+αβλ∑m
i=1

∑ri
k=1 (1 + λte−βtxα

t
i )α−1e−β(1+λte

−βtxαti )α

−∑m
i=1

∑ri
k=1 ln(1 + λte−βtxα

t
i )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

β t+1 = n⎧⎨
⎩
∑m

i=1 x
α
i + λ

∑m
i=1 x

α
i e

−βxαi + ∑m
i=1

∑ri
k=1(1 + λte−βtxα

t
i )α

+λ∑m
i=1

∑ri
k=1 (1 + λte−βtxα

t
i )αe−β(1+λte

−βtxαti )α

⎫⎬
⎭

and

λt+1 = n{
n − ne−λ

(1−e−λ) − ∑m
i=1 e

−βxαi − ∑m
i=1

∑ri
k=1 e

−β(1+λte−βtxα
t

i )α
} .

Then (αt+1,β t+1, λt+1) is used as the current estimates of (α,β , λ) in the next itera-
tion. The MLEs of (α,β , λ) can be obtained by repeating the E-step and M-step until
convergence is achieved.

2.1. Large sample test procedure

Now,we shall discuss LRmethod for comparing the suitability of competitivemodels. Note
that if we take ri = 0 and n = m in (16)–(18), these reduce to complete sample normal
equations. The observed Fisher’s Information matrix is

Jn(α,β , λ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−∂
2 ln L(α,β , λ)

∂α2
−∂

2 ln L(α,β , λ)
∂α∂β

−∂
2 ln L(α,β , λ)
∂α∂λ

−∂
2 ln L(α,β , λ)
∂β∂α

−∂
2 ln L(α,β , λ)

∂β2
−∂

2 ln L(α,β , λ)
∂β∂λ

−∂
2 ln L(α,β , λ)
∂λ∂α

−∂
2 ln L(α,β , λ)
∂λ∂β

−∂
2 ln L(α,β , λ)

∂λ2

⎞
⎟⎟⎟⎟⎟⎟⎠
(α̂,β̂ ,λ̂)

where,

∂2 ln L(α,β , λ)
∂α2

= n
α2

+
n∑

i=1
βxαi (log(xi))

2(1 + λe−βx
α
i − βλxαi e

−βxαi ),

∂2 ln L(α,β , λ)
∂α∂β

= ∂2 ln L(α,β , λ)
∂β∂α

=
n∑

i=1
βxαi log(xi)(1 + λe−βx

α
i − βλxαi e

−βxαi ),
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∂2 ln L(α,β , λ)
∂α∂λ

= ∂2 ln L(α,β , λ)
∂λ∂α

=
n∑

i=1
βxαi log(xi)e

−βxαi ,

∂2 ln L(α,β , λ)
∂β2

= n
β2

− λ

n∑
i=1
(xαi )

2e−βx
α
i ,

∂2 ln L(α,β , λ)
∂β∂λ

= ∂2 ln L(α,β , λ)
∂λ∂β

=
n∑

i=1
xαi e

−βxαi ,

∂2 ln L(α,β , λ)
∂λ2

= n
λ2

− n
eλ

(1 − eλ)2
.

Let Tn(α,β , λ) be the expectation of Fisher Information matrix, i.e.

Tn(α,β , λ) = E(Jn(α,β , λ)) = n

⎛
⎝T11 T12 T13
T21 T22 T23
T31 T32 T33

⎞
⎠

where,

T11 = 1
α2

+ βE[xαz (log(xz))
2(1 + λe−βx

α
z − βλxαz e

−βxαz )],

T12 = T21 = E[xαz log(xz)(1 + λe−βx
α
z − βλxαz e

−βxαz )],

T13 = T31 = βE[xαz log(xz)e
−βxαz ],

T22 = 1
β2

− λE[(xαz )
2e−βx

α
z ],

T23 = T32 = E[xαz e
−βxαz ],

T33 = 1
λ2

− eλ

(1 − eλ)2
.

For large n, under the usual regularity condition, we found that (α̂, β̂ , λ̂) has a multi-
variate normal distribution with mean (α,β , λ) and covariance matrix T−1

n (α,β , λ). The
asymptotic property of normality is useful for performing a goodness-of-fit test. Here,
we can test the significance of the model parameters by comparing this full model with
specified nested models based on the LR test. By considering null hypothesis H01 : α = 1
against H11 : α �= 1 and H02 : λ = 0 against H12 : λ �= 0, one can compare the suitability
of Exponential Poisson (EP) andWeibull versusWPM, respectively. The test statistic under
H0i, i = 1, 2, are

R1 = −2 ln

(
L(α0, β̂ , λ̂)
L(α̂, β̂ , λ̂)

)
and R2 = −2 ln

(
L(α̂, β̂ , λ0)
L(α̂, β̂ , λ̂)

)
,

respectively, which are asymptotically distributed as chi-square with degrees of freedom
equal to the respective dimension of the parameter space under the null hypothesis.
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2.2. Bayesian estimation under PT-II CBRs

To obtain the Bayes estimator of α,β and λ, we assume that these are independently dis-
tributed prior pdfs forα andλ are chosen by using Jeffery’smethod i.e. log of the parameters
are uniformly distributed; resulting to the following distributions:

g1(α) ∝ 1
α
; α > 0. (20)

g2(λ) ∝ 1
λ
; λ > 0. (21)

Keeping in mind the wide coverage of variety of prior beliefs, we have chosen gamma dis-
tribution given below as prior distribution; see for details, Nassar and Eissa [20] and Box
and Tiao [5].

g3(β) ∝ e−aββb−1; a > 0, b > 0, (22)

where a and b are scale and shape parameters of the gammadistribution. Thus the posterior
distribution of the parameters can easily be obtained as

π(α,β , λ|x, r) ∝ αm−1λm−1βm+b−1e−mλ−β∑m
i=1 x

α
i −aβ+λ∑m

i=1 e
−βxαi

(1 − eλ)m

×
m∏
i=1

xα−1
i

⎡
⎣1 − eλe

−βxαi

1 − e−λ

⎤
⎦
ri

,

and the respective marginal posterior pdfs of α,β and λ can be computed from the
following

π1(α|x, r) =
∫ ∞

0

∫ ∞

0
π(α,β , λ|x, r) dβ dλ,

π2(β|x, r) =
∫ ∞

0

∫ ∞

0
π(α,β , λ|x, r) dα dλ,

and

π3(λ|x, r) =
∫ ∞

0

∫ ∞

0
π(α,β , λ|x, r) dα dβ .

Now, let us consider themost popular symmetric loss function (i.e. squared error loss func-
tion (SELF)) has equal weight to the over and under estimation of the samemagnitude. The
SELF is defined as follows:

L(τ̂ , τ) ∝ (τ − τ̂ )2,

where, τ̂ is the estimate of the parameter τ . The posterior risk is

EpostL(τ̂ , τ) ∝ Epost(τ − τ̂ )2.

The Bayes estimator τ̂S of τ comes out to be Epost(τ ), where Epost denotes the posterior
expectation which minimizes posterior risk. It may also be noted that this symmetric loss
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function can only be justified if over and under estimation of equal magnitude are of equal
seriousness. But in practical situations, this may not be true. Keeping this point in mind
several asymmetric loss functions are available in the statistical literature, and one of the
most widely used asymmetric loss function is the general entropy loss function (GELF)
which is proposed by Calabria and Pulcini [6]. It is defined as follows:

L(τ , τ̂ ) ∝
(
τ̂

τ

)δ
− δ ln

(
τ̂

τ

)
− 1. (23)

The constant δ, involved in (23) is shape parameter. It also reflects departure from sym-
metry. When δ > 0, over estimation (i.e. positive error) causes more serious consequences
than under estimation (i.e. negative error) and converse for δ < 0. The posterior risk is

EpostL(τ , τ̂ ) ∝ Epost
(
τ̂

τ

)δ
− δ ln

(
τ̂

τ

)
− 1, δ �= 0.

The value of τ that minimizes posterior risk i.e. the Bayes estimator τ̂G of τ under GELF is
given by

τ̂G = (Epost(τ−δ))(−1/δ), (24)

provided the posterior expectation exits. It may be noted that for δ = −1, the Bayes esti-
mator (24), coincides with the Bayes estimator under SELF. The expressions for the Bayes
estimators of the parameters α,β and λ, denoted by α̂G, β̂G and λ̂G, respectively, are given
below

α̂G =
[∫ ∞

0
α−δπ1(α|x, r) dα

]−1/δ
, (25)

β̂G =
[∫ ∞

0
β−δπ2(β|x, r)dβ

]−1/δ
, (26)

and

λ̂G =
[∫ ∞

0
λ−δπ3(λ|x, r)dλ

]−1/δ
. (27)

It may be noted that the integrals in (25)–(27) cannot be reduced to closed forms. Hence,
numerical computational techniques are suggested for their calculations following Tierney
[29], who has suggested the use of well-known technique, namely, Markov Chain Monte
Carlo (MCMC) technique in which the samples are generated from posterior distribution
by Gibbs sampler viaMetropolis–Hastings algorithms. The samples thus obtained are then
used to evaluate the Bayes estimates under SELF and GELF. It may be noted that Gibbs
sampler uses to generate samples from full conditionals to generate samples from posterior
distribution and for details [10]. Full conditional posterior distributions of the parameters
α,β , and λ can be written in the following form:

π∗
1 (α|β , λ, x, r) ∝ αm−1e

−β
m∑
i=1

xαi + λ

m∑
i=1

e−βx
α
i m∏
i=1

xα−1
i {1 − eλe

−βxαi }ri , (28)
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π∗
2 (β|α, λ, x, r) ∝ βm+b−1e−β

∑m
i=1 x

α
i −aβ+λ∑m

i=1 e
−βxαi

m∏
i=1

{1 − eλe
−βxαi }ri , (29)

and

π∗
3 (λ|α,β , x, r) ∝ λm−1e−mλ+λ∑m

i=1 e
−βxαi

(1 − e−λ)m

m∏
i=1

⎧⎨
⎩1 − eλe

−βxαi

1 − eλ

⎫⎬
⎭

ri

. (30)

The Bayes estimators of α, β and λ are evaluated from the required sample of (28)–(30),
generated by using MCMC procedure. The algorithm used for obtaining Bayes estimates
and highest posterior density (HPD) credible intervals is given below:

(I) Set α0, β0 and λ0 be the initial guess of α, β and λ.
(II) Set i = 1.
(III) Generate αi from π∗

1 (α|βi−1, λi−1, x, r), βi from π∗
2 (β|λi−1,αi−1, x, r) and λi from

π∗
3 (λ|αi−1,βi−1, x, r) respectively.

(IV) Repeat steps 2–3, N times.
(V) Obtain the Bayes estimates of α, β and λ under GELF as [E(α−δ|x, r)]−1/δ =

[ 1
N−N0

∑N−N0
i=1 α−δ

i ]−1/δ , [E(β−δ|x, r)]−1/δ = [ 1
N−N0

∑N−N0
i=1 β−δ

i ]−1/δ and
[E(λ−δ|x, r)]−1/δ = [ 1

N−N0

∑N−N0
i=1 λ−δ

i ]−1/δ , where N0 is the burn in period. Sub-
stituting δ = −1 in step V, we get Bayes estimates of α, β and λ under SELF.

(VI) For computing the HPD credible interval of α, β and λ. We order the MCMC
sample values α, β and λ (say α1,α2,α3, . . . ,αN as α(1),α(2),α(3), . . . ,α(N),
β1,β2,β3, . . . ,βN asβ(1),β(2),β(3), . . . ,β(N) andλ1, λ2, λ3, . . . , λN asλ(1), λ(2), λ(3),
. . . , λ(N)). Then construct all the 100(1-�)% credible intervals of α β and λ, say
((α(1),αN[(1−Ψ )]+1), . . . , (α[NΨ ],αN), (β(1),βN[(1−Ψ )]+1), . . . , (β[NΨ ],βN)& (λ(1),
λ[N(1−Ψ )]+1), . . . , (λ[NΨ ], λN)) respectively. Where [η] denotes the largest integer
less than or equal to η. Then the HPD credible interval of α, β and λ is that interval
which has the shortest length.

3. Bayes prediction

In this section, we have derived an expression for one sample Bayes prediction, if the exper-
imenter is interested to know the lifetimes of the (n − m) removed surviving units on the
basis of observed sample. Let Ys = Xm+s, m < s ≤ n, represents the failure lifetime of the
remaining units, then conditional distribution of Y th

(s) order statistics given PT-II CBRs
sample x is given by, see Singh et al. [25]

f (y(s)|x(m),α,β , λ) = (n − m)![1 − F(y(s))]n−m−s

(s − 1)!(n − m − s)![1 − F(x(m))]n−m [F(y(s))− F(x(m))]s−1f (y(s)).

(31)
Substituting (1) and (2) in (31), we have

f (y(s)|x(m),α,β , λ) = αβyα−1
(s) ζ(y(s)) log(ζ(y(s)))

(n − m)!
(s − 1)!(n − m − s)!

×
[
1 − ζ(y(s))
1 − ζ(x(m))

]n−m
[1 − ζ(y(s))]−s[ζ(x(m))− ζ(y(s))]s−1,
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where, ζ(z) = eλe−βz
α

. One sample Bayes predictive density of yth(s) ordered future sample
can be obtained as follows:

f (y(s)|x) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
f(y(s)|x,α,β , λ)π(α,β , λ|x) dα dβ dλ

The above equation for f (y(s)|x) cannot be expressed in closed form and hence it cannot be
evaluated analytically. Therefore, MCMC techniques is proposed to be used for obtaining
the approximate solution of the above predictive density. {(αi,βi, λi); i = 1, 2, . . . ,N − N0}
obtained from π(α,β , λ|x) using Gibbs sampling can be utilized to obtain the consistent
estimate of f (y(s)|x). It can be obtained by

f (y(s)|x) = 1
N − N0

N−N0∑
i=1

f(y(s)|αi,βi, λi). (32)

Thus, we can obtain the two-sided 100(1 − ψ)%prediction interval (l, u) for future sample
by solving the following two equations:

P(Y(s) > u|x) = ψ

2
and P(Y(s) > l|x) = 1 − ψ

2
.

It is not possible to obtain the solutions analytically. We need to apply suitable
numerical techniques for solving these non-linear equations. Alternatively, we can also
use the MCMC approach discussed by Chen and Shao [7], in the following way:
Let {(y(i:s)); i = 1, 2, . . . ,N − N0} be the corresponding ordered MCMC sample of
{(yi:s); i = 1, 2, . . . ,N − N0} from (32). Then, the 100(1 − ψ)% HPD intervals for y(s) is
(y(j∗:s), yj∗+[(1−ψ)M]:s), where j∗ is chosen so that

yj∗+[(1−ψ)N−N0]:s − y(j∗:s) = min
1≤j≤N−N0−[(1−ψ)N−N0]

[yj∗+[(1−ψ)N−N0]:s − y(j∗:s)].

For considered real data set, we calculated the mean and 95% credible intervals (predic-
tive bounds) for future samples using one sample prediction technique. The results are
summarized in Table 1.

4. Expected experiment time

Cost of an experiment is directly related to the experiment time. Therefore, for a
proper planning of the experimentation one is always interested in knowing the expected

Table 1. Mean and 95% predictive bounds for future
orderedobservations from thebladder cancer data set.

One sample prediction

Bounds

s Mean l u

1 79.04829 77.18001 80.46525
2 79.42236 78.31463 80.52509
3 79.59276 78.47721 80.69601
4 79.89351 78.78346 81.01349
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experiment time, which can be defined PT-II CBRs

E[Xm] = ER[E[Xm|R = r]]

=
g(r1)∑
r1=0

g(r2)∑
r2=0

· · ·
g(rm−1)∑
rm−1=0

p(R, p)E[Xm:m:n|R = r]. (33)

Where g(ri) = n − m − r1 − · · · − ri−1 and p(R = r; p) is given in (9). Conditioning on R
the expected experiment time is

E[Xm|R] =
∫ ∞

0
xfXm(x) dx,

where, fX(m) = Cm−1f (x)
∑m

j=1 aj,m(1 − F(x))γj , 1 ≤ m ≤ n and cm−1 = ∏m
i=1 γi, 1 ≤

m ≤ n and aj,m = ∏m
i=1

1
γi−γj ; i �= j, 1 ≤ j ≤ m ≤ n. For more details about the proce-

dure of evaluation of conditional expectation of Xm for given R, see Balakrishnan and
Aggarwala [2], Singh et al. [25], Tse et al. [30]. Using the suggested procedure, expected
experiment times under PT-II CBRs are computed for different combinations of m and n
listed in Table 2. The values of p, considered here are 0.1, 0.3, 0.5, 0.7 and 0.9 while model
parameters α,β and λ are arbitrarily taken as 1, 2 and 2 respectively. The results obtained
are summarized below in table 2.

Now we can obtain ratio of the expected experiment time (REET) between PT-II CBRs
and the complete sampling as

REET = E[Xm]under PT-II CBRs
E[Xn]under complete sampling

. (34)

It may be noted that REET indicates the reduction in experiment time. Figure 1
shows REET for various values of n for m = 10 and different removal probability p =
0.1, 0.3, 0.5, 0.7 and 0.9. It can be seen from the figure that for each values of p, the REET
decreases as n increases. It may be, noted that for larger value of (>0.5) and larger n(>25);
the values of REET do not change for change in the value of p. For p ≤ 0.5 and moderate
sample size (25) larger valuers of REET is noted for smaller valuers of p.

Table 2. Expected experiment time E[Xm] under PT-II CBRs.

n m p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

30 10 0.15660 0.57392 0.86262 0.93033 0.96077
15 0.37201 0.99414 1.09666 1.13149 1.13086
20 0.76695 1.23138 1.27059 1.30419 1.25337
25 0.93638 1.35836 1.37069 1.34487 1.35232
30 1.47650 1.45380 1.49828 1.45718 1.47108

20 10 0.28018 0.73055 0.91508 0.95055 0.95818
15 0.71918 1.10303 1.13051 1.15929 1.14585
20 1.27924 1.28742 1.27601 1.28292 1.28714

10 3 0.08832 0.12157 0.19727 0.31295 0.43709
4 0.13669 0.22246 0.36903 0.50305 0.58098
6 0.29297 0.51585 0.67842 0.75186 0.76813
10 0.99404 0.98307 0.97925 0.98829 0.99048
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Figure 1. REET under PT-II CBRs to under complete sample.

5. Monte Carlo simulation and comparison

Wehave seen above that proposed estimators are not obtained in the closed form; therefore,
an analytical study of behavior of the estimators is not possible and we propose to study
it numerically. For this purpose, we suggest the use of MCMC technique as suggested by
Tierney [29] also, for the calculation of risk (average loss over sample space) of estimators
of the parameters α, β and λ. Hence, samples are generated from specifiedWPM and PT-II
CBRs samples are obtained from these. MLE along with Bayes estimators under SELF and
GELF are calculated. The ML estimators are denoted as; α̂M , β̂M , λ̂M where as α̂S, β̂S, λ̂S
and α̂G, β̂G, λ̂G denote SELF and GELF estimates of the parameters α,β and λ, respec-
tively. Similarly, (αcL,α

c
U), (β

c
L,β

c
U), (λ

c
L, λ

c
U) and (α

h
L ,α

h
U), (β

h
L ,β

h
U), (λ

h
L, λ

h
U) indicate

100(1 − Ψ )% confidence interval and HPD credible intervals. Risk are estimated on the
basis of 8000 samples. Since risk of the estimators under PI-II CBRs will be function of n,
m, p, α, β , λ, δ, a and b. The choice of hyper parameter are made by assuming that the
prior information about the parameter is available in the form of its expected value μ and
its variance σ 2 reflecting the confidence in expected value. Thus a and b are calculated
from equations, which can be taken in such a way that if we consider any two independent
pieces of information as prior mean and variance of β are μ = b

a and σ
2 = b

a2 , where μ is
taken as true values of the parameter β and smaller, moderate and large values of variances,
namely 0.5, 1 and 5 which gave (a = 4, b = 8), (a = 2, b = 4) and (a = 0.4, b = 0.8),
respectively. We vary the effective samples size m = 10[5]30. The value of α,β and λ
are arbitrarily taken as 1, 2 and 2, respectively. The value of loss parameter δ is taken
as 1.5 for over estimation to be more serious than under estimation and see Singh et al.
[24]. After an extensive study of results thus obtained, conclusions are drawn regarding
the behavior of the estimators. It may be mention here that because of space restriction,
results for all the variation in the parameters are not shown here. Only selected figures
are included.

6. Discussion of results

In this section, we shall discuss the impact of variation of effective sample size m under
PT-II CBRs and compare the risks of all the estimators of α,β and λ, obtained under
GELF with the corresponding Bayes estimators under SELF and MLE. It is observed that
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the risks of all the estimators of α,β and λ decrease as effective sample observations m
increases. The risks of (α̂G, β̂G) and (α̂S, β̂S) are found to be close respectively to each other
for all the considered situations. A similar trend is observed for λ̂G and λ̂S also. It is further
observed that, in general, the risks of the estimators under SELF and GELF decreases, as
for δ = +1.5 and δ = −1.5 with each prior belief of the parameter β (see Figures 2–4).

Figure 2. Risks for the estimators of parameter α for fixed n = 30, p = 0.5, α = 1, β = 2, λ = 2 with
small prior variance, β = 0.5; for panels (a) and (b) δ = 1.5; for panels (c) and (d) δ = −1.5.

Figure 3. Risks for the estimators of parameter α for fixed n = 30, p = 0.5, α = 1, β = 2, λ = 2 with
moderate prior variance, β = 1; for panels (a) and (b) δ = 1.5; for panels (c) and (d) δ = −1.5.
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Figure 4. Risks for the estimators of parameter α for fixed n = 30, p = 0.5, α = 1, β = 2, λ = 2 with
high prior variance, β = 5; for panels (a) and (b) δ = 1.5; for panels (c) and (d) δ = −1.5.

For large number of effective sample sizes, the difference between the risks of the estima-
tors are less. The decrease in the risks is more for α̂M as compared to the other estimators.
For almost all values of prior belief of the parameter β and δ, the risk of α̂G under GELF
is found to be least among the considered estimators. It is also interesting to remark here
that α̂G has the least risk under SELF. For positive values of δ, the behavior of risks of
estimators under GELF is more or less similar to the one obtained for negative δ (see
Figures 2–4).

Similarly, we have studied the risks of Bayes estimators β and λ respectively under SELF
and GELF based on PT-II CBRs. The trend remains more or less the same as stated above
under both loss functions see results in graphs, which is shown in supplementary material.
Further we observed that the risk of β̂G and λ̂G under GELF and SELF are found to be least
among the considered estimators, respectively.

Figure 5 shows the CI/HPD credible intervals for α. It may also be noted that aver-
age length of CI/HPD credible intervals narrow down as m increases. The HPD credible
intervals are better than CIs in respect of average length. While studying the effect of large
effective sample sizesm, the difference of average lengths between the CIs and HPD cred-
ible intervals are negligibly small. For β and λ also, the trend of CI/HPD credible intervals
is similar to that of α. Due to space restriction, results for variations inm of CI/HPD cred-
ible intervals of β and λ are not shown here. The CI/HPD credible intervals of β and λ are
given in the supplementary material. Thus, we cannot deny from the fact that estimates
under Bayesian are more precise and accurate than ML estimates.

We also discussed the expected time to test shown in Table 2. It is meaningful to com-
ment that as the value p and m increase the expected time to test also increases. It is also
observed that for fixedm, if increases the value of the sample size, i.e. n, the expected time
to test decreases.
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Figure 5. The confidence interval and HPD intervals for α when prior variance is 0.5, 1 and 5 with left
panel: δ = 1.5; right panel: δ = −1.5, respectively.

7. An application example

In this section, we have a real data set given by Lee and Wang [18]. It contains a set of
remission times (in months) related to 137 cancer patients, and some patients are lost to
follow-up. These remission times (inmonths) are a subset of the data from a bladder cancer
study.We have considered here a random set of 128 observations from the study, which are
given as follows:4.50, 32.15, 3.88, 13.80, 19.13, 4.87, 5.85, 14.24, 5.71, 7.09, 7.87, 7.59, 20.28,
5.32, 5.49, 3.02, 46.12, 2.02, 4.51, 5.17, 2.83, 9.22, 1.05, 0.20, 8.37, 3.82, 9.47, 36.66, 14.77,
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26.31, 79.05, 10.06, 8.53, 2.02, 4.98, 11.98, 2.62, 4.26, 5.06, 1.76, 0.90, 11.25, 16.62, 4.40,
21.73, 10.34, 12.07, 34.26, 10.66, 6.97, 2.07, 0.51, 12.03, 0.08, 17.12, 3.36, 2.64, 1.40, 12.63,
43.01, 14.76, 2.75, 7.66, 0.81, 1.19, 7.32, 4.18, 3.36, 8.66, 1.26, 13.29, 1.46, 14.83, 6.76, 23.63,
5.62, 3.25, 18.10, 7.62, 7.63, 17.14, 25.74, 3.52, 2.87, 15.96, 17.36, 9.74, 3.31, 7.28, 1.35, 0.40,
2.26, 4.33, 9.02, 5.41, 2.69, 22.69, 6.94, 2.54, 11.79, 2.46, 7.26, 2.69, 5.34, 3.48, 8.26, 6.93,
4.23, 3.70, 0.50, 10.75, 6.54, 3.64, 5.32, 13.11, 8.65, 3.57, 5.09, 7.39, 5.41, 11.64, 2.09, 2.23,
6.25, 7.93, 4.34, 25.82, 12.02.

First of all, we checked the suitability of WPM to the considered data set and com-
pared with some well-established lifetime models, namely, EP and Weibull distribution.
For testing the goodness of fit, we used the method based on maximum likelihood func-
tion, the Kolmogorov–Smirnov (KS) distance, the Akaike information criterion (AIC),
proposed by Akaike [1], Bayesian information criterion (BIC) proposed by Schwarz et al.
[22]. The best distribution is that which corresponds to the lowest − ln L, AIC, BIC and
KS statistic value and corresponding highest p values. Further, we have used a graphi-
cal method also goodness of fit of distributions. We draw quantile–quantile (Q–Q) plots
for above-mentioned three lifetime models and are presented in Figure 6. A Q–Q plot
depicts the points {F−1( i−0.5

n ; �̂M , x(i))}, i = 1, 2, 3, . . . , n, where �̂M is the MLE of the
set parameters of lifetime model. The values of MLEs of the parameters of the consid-
ered lifetime models, − ln L, AIC, BIC, KS statistic and associated p values are reported
in Table 3.

This table shows thatWPM provides better fit thanEP andWeibull distribution. Further,
we tested the hypothesis: H01 : α = 1 (Data follow Exponential Poisson) vs H11 : α �= 1
(Data followWeibull Poisson) andH02 : λ = 0 (Data followWeibull) vsH12 : λ �= 0 (Data
follow Weibull Poisson), using the large sample test described in Section 2.1. The value of
the test statistic R1 and R2 are obtained as 8.30737 and 7.79551, respectively. Which reject
H01 and H02.

Now for the purpose of illustrating the method discussed in this article, PT-II CBR
samples are generated from this data set under different schemes. The number of removals
are shown in Table 4 under different schemes. The EM algorithm procedure is used to
compute theMLEs ofα,β and λ. The initial value in this procedure is chosen using contour
plots of parameters, and their corresponding log-likelihoods are plotted using R software
(Figure 7).

As we have no prior information about the parameter β , and we use non-informative
prior for which the hyper parameter of β is taken to be (a = 0 : 000001; b = 0 : 000001).
When implementing MCMC algorithm, the values of MLEs are used as initial guess and
CUSUMplots are plotted and verified the convergence ofMarkov chain. Then, we evaluate
Bayes estimates and HPD intervals using the formulae given in previous Section 3 under
different censoring schemes based on Table 4, the Bayes estimate of α, β and λ under SELF

Table 3. The -Log likelihood (− ln L), KS, p-value and the AIC and BIC values for the Weibull Poisson
(WP), Exponential Poisson (EP) and Weibull fitted Models.

Estimates − ln L KS p-value AIC BIC

WP(α,β , λ) (1.26853,0.01629,4.26518) −410.189 0.046875 0.99896 826.3782 834.9343
EP(β , λ) (0.106371,0.0000047) −414.343 0.078125 0.82955 834.6856 843.2417
Weibull(α,β) (1.04784,0.09389) −414.087 0.0703125 0.90972 834.1738 842.7298
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Figure 6. Top row: WP, Middle row: EP, Last row: Weibull distribution shows the PP and QQ plot for
bladder cancer data set.

and GELF for δ = ±1.5 are presented in Table 5. It may also be seen from Table 5 that vari-
ous estimates, obtained using PT-II CBRs, are quite close to those obtained under complete
samples.

8. Conclusion and remark

On the basis of the discussion of results given in the previous section, we may conclude
that the proposed estimators α̂G, β̂G and λ̂G perform better than all other considered
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Figure 7. The Contour and -Log likelihood plot of α,β and λ for bladder cancer data set.

competitive estimators, for (δ > 0), i.e. when over estimation ismore serious than underes-
timation and for (δ < 0), i.e. when under estimation is more serious than over estimation,
under both the loss functions. Thus, the use of the proposed estimator α̂G, β̂G and λ̂G are
recommended under SELF and GELF. Moreover, a brief study has done on the expected
experiment time by taking the various combinations of effective parameters n, p and m
and it observed that on increases the value of p andm, the expected time to test increases.
While, for fixed m, on increases the value of n, the expected time to test decreases. The
likelihood ratio test has performed the goodness of fit. The one sample Bayes prediction
has also presented. Furthermore, a real data set is fitted to show the practical applicability
ofWPM.
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Table 4. PT-II CBR samples under different censoring scheme (Sn:m) for
fixed n = 128, p = 0.5.

S128:64 S128:77 S128:102

i Xi Ri Xi Ri Xi Ri Xi Ri Xi Ri

1 0.08 23 0.08 18 20.28 0 0.08 7 10.34 0
2 2.69 17 2.26 9 21.73 0 1.19 4 10.66 0
3 4.23 7 3.02 8 22.69 0 1.76 3 10.75 0
4 4.98 2 3.7 6 23.63 0 2.09 4 11.25 0
5 5.17 3 4.34 2 25.74 0 2.62 0 11.64 0
6 5.41 1 4.51 3 25.82 0 2.64 2 11.79 0
7 5.49 5 5.09 2 26.31 0 2.75 2 11.98 0
8 6.76 4 5.32 1 32.15 0 3.02 0 12.02 0
9 7.26 0 5.41 1 34.26 0 3.25 2 12.03 0
10 7.28 1 5.49 0 36.66 0 3.36 0 12.07 0
11 7.39 1 5.62 0 43.01 0 3.48 1 12.63 0
12 7.62 0 5.71 0 46.12 0 3.57 0 13.11 0
13 7.63 0 5.85 0 79.05 0 3.64 0 13.29 0
14 7.66 0 6.25 1 3.7 1 13.8 0
15 7.87 0 6.76 0 3.88 0 14.24 0
16 7.93 0 6.93 0 4.18 0 14.76 0
17 8.26 0 6.94 0 4.23 0 14.77 0
18 8.37 0 6.97 0 4.26 0 14.83 0
19 8.53 0 7.09 0 4.33 0 15.96 0
20 8.65 0 7.26 0 4.34 0 16.62 0
21 8.66 0 7.28 0 4.4 0 17.12 0
22 9.02 0 7.32 0 4.5 0 17.14 0
23 9.22 0 7.39 0 4.51 0 17.36 0
24 9.47 0 7.59 0 4.87 0 18.1 0
25 9.74 0 7.62 0 4.98 0 19.13 0
26 10.06 0 7.63 0 5.06 0 20.28 0
27 10.34 0 7.66 0 5.09 0 21.73 0
28 10.66 0 7.87 0 5.17 0 22.69 0
29 10.75 0 7.93 0 5.32 0 23.63 0
30 11.25 0 8.26 0 5.32 0 25.74 0
31 11.64 0 8.37 0 5.34 0 25.82 0
32 11.79 0 8.53 0 5.41 0 26.31 0
33 11.98 0 8.65 0 5.41 0 32.15 0
34 12.02 0 8.66 0 5.49 0 34.26 0
35 12.03 0 9.02 0 5.62 0 36.66 0
36 12.07 0 9.22 0 5.71 0 43.01 0
37 12.63 0 9.47 0 5.85 0 46.12 0
38 13.11 0 9.74 0 6.25 0 79.05 0
39 13.29 0 10.06 0 6.54 0
40 13.8 0 10.34 0 6.76 0
41 14.24 0 10.66 0 6.93 0
42 14.76 0 10.75 0 6.94 0
43 14.77 0 11.25 0 6.97 0
44 14.83 0 11.64 0 7.09 0
45 15.96 0 11.79 0 7.26 0
46 16.62 0 11.98 0 7.28 0
47 17.12 0 12.02 0 7.32 0
48 17.14 0 12.03 0 7.39 0
49 17.36 0 12.07 0 7.59 0
50 18.1 0 12.63 0 7.62 0
51 19.13 0 13.11 0 7.63 0
52 20.28 0 13.29 0 7.66 0
53 21.73 0 13.8 0 7.87 0
54 22.69 0 14.24 0 7.93 0
55 23.63 0 14.76 0 8.26 0
56 25.74 0 14.77 0 8.37 0
57 25.82 0 14.83 0 8.53 0

(continued)
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Table 4. Continued.

S128:64 S128:77 S128:102

i Xi Ri Xi Ri Xi Ri Xi Ri Xi Ri

58 26.31 0 15.96 0 8.65 0
59 32.15 0 16.62 0 8.66 0
60 34.26 0 17.12 0 9.02 0
61 36.66 0 17.14 0 9.22 0
62 43.01 0 17.36 0 9.47 0
63 46.12 0 18.1 0 9.74 0
64 79.05 0 19.13 0 10.06 0

Table 5. Bayes and ML estimates, CI/HPD interval for WPM parameters α, β and λ with pre-defined
censoring schemes for the bladder cancer data set.

Scheme Parameter MLE SELF GELF CI HPD

Sn:m δ = −1.5 δ = 1.5 θCL θCU θhL θhU

S128:64 α 1.752554 1.753276 1.753308 1.753111 1.722654 1.782455 1.723427 1.78316
β 0.001915 0.015308 0.016975 0.00012 3.52E−07 0.031815 4.53E−07 0.034268
λ 4.664404 4.664876 4.665002 4.664246 4.569793 4.759014 4.571824 4.760873

S128:77 α 1.690516 1.708283 1.709049 1.704437 1.550406 1.830627 1.569133 1.853984
β 0.002777 0.080686 0.087632 0.000115 1.26E−07 0.469512 1.37E−07 0.168236
λ 4.652349 4.671151 4.674187 4.655874 4.185615 5.119084 4.209607 5.1385

S128:102 α 1.523263 1.511028 1.513516 1.498465 1.279468 1.767057 1.267033 1.742682
β 0.006193 0.006015 0.006602 0.000115 4.43E−07 0.013385 8.43E−07 0.012561
λ 4.499809 4.739747 4.982471 0.314773 1.033094 7.966523 3.946512 6.012466
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