Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1098
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAl-Babtain, Abdulhakim A.-
dc.contributor.authorKumar, Devendra-
dc.contributor.authorGemeay, Ahmed M.-
dc.contributor.authorDey, Sanku-
dc.contributor.authorAfify, Ahmed Z.-
dc.date.accessioned2023-05-02T10:10:56Z-
dc.date.available2023-05-02T10:10:56Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/123456789/1098-
dc.description.abstractIn this paper, we introduce a new flexible distribution called the Weibull Marshall-Olkin power-Lindley (WMOPL) distribution to extend and increase the flexibility of the power-Lindley distribution to model engineering related data. The WMOPL has the ability to model lifetime data with decreasing, increasing, J-shaped, reversed-J shaped, unimodal, bathtub, and modified bathtub shaped hazard rates. Various properties of the WMOPL distribution are derived. Seven frequentist estimation methods are considered to estimate the WMOPL parameters. To evaluate the performance of the proposed methods and provide a guideline for engineers and practitioners to choose the best estimation method, a detailed simulation study is carried out. The performance of the estimators have been ranked based on partial and overall ranks. The performance and flexibility of the introduced distribution are studied using one real data set from the field of engineering. The data show that the WMOPL model performs better than some well-known extensions of the power-Lindley and Lindley distributions.en_US
dc.language.isoenen_US
dc.publisherJournal of King Saud University - Scienceen_US
dc.subjectAnderson–Darling estimation Maximum likelihood estimation Maximum product of spacing Moments Power-Lindley distributionen_US
dc.titleModeling engineering data using extended power-Lindley distribution: Properties and estimation methodsen_US
dc.typeArticleen_US
Appears in Collections:School of Basic Sciences

Files in This Item:
File Description SizeFormat 
Modeling engineering data using extended power-Lindley distribution.pdf706.02 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.