Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1103
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKajla, Arun-
dc.contributor.authorMohiuddine, S,A-
dc.contributor.authorAlotaibi, Abdullah-
dc.date.accessioned2023-05-02T11:18:16Z-
dc.date.available2023-05-02T11:18:16Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/123456789/1103-
dc.description.abstractIn the present manuscript, we consider -Bernstein-Durrmeyer operators involving a strictly positive continuous function. Firstly, we prove a Voronovskaja type, quantitative Voronovskaja type and Gr¨ uss-Voronovskaja type asymptotic formula, the rate of convergence by means of the modulus of continuity and for functions in a Lipschitz type space. Finally, we show that the numerical examples which describe the validity of the theoretical example and the effectiveness of the defined operators.en_US
dc.language.isoenen_US
dc.publisherMathematicsen_US
dc.subjectPositive Approximation, Steklov mean.en_US
dc.titleDurrmeyer-Type Generalization of -Bernstein Operatorsen_US
dc.typeArticleen_US
Appears in Collections:School of Basic Sciences

Files in This Item:
File Description SizeFormat 
Durrmeyer-Type Generalization of μ- Bernstein Operators.pdf259.71 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.