Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1143
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKour, Kanwalpreet-
dc.contributor.authorGupta, Deepali-
dc.contributor.authorGupta, Kamali-
dc.contributor.authorAnand, Divya-
dc.contributor.authorElkamchouchi, Dalia H.-
dc.contributor.authorGoyal, Nitin-
dc.contributor.authorIbrahim, Muhammad-
dc.date.accessioned2023-05-03T14:23:07Z-
dc.date.available2023-05-03T14:23:07Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/123456789/1143-
dc.description.abstractThe world population is on the rise, which demands higher food production. The reduction in the amount of land under cultivation due to urbanization makes this more challenging. The solution to this problem lies in the artificial cultivation of crops. IoT and sensors play an important role in optimizing the artificial cultivation of crops. The selection of sensors is important in order to ensure a better quality and yield in an automated artificial environment. There are many challenges involved in selecting sensors due to the highly competitive market. This paper provides a novel approach to sensor selection for saffron cultivation in an IoT-based environment. The crop used in this study is saffron due to the reason that much less research has been conducted on its hydroponic cultivation using sensors and its huge economic impact. A detailed hardware-based framework, the growth cycle of the crop, along with all the sensors, and the block layout used for saffron cultivation in a hydroponic medium are provided. The important parameters for a hydroponic medium, such as the concentration of nutrients and flow rate required, are discussed in detail. This paper is the first of its kind to explain the sensor configurations, performance metrics, and sensor-based saffron cultivation model. The paper discusses different metrics related to the selection, use and role of sensors in different IoT-based saffron cultivation practices. A smart hydroponic setup for saffron cultivation is proposed. The results of the model are evaluated using the AquaCrop simulator. The simulator is used to evaluate the value of performance metrics such as the yield, harvest index, water productivity, and biomass. The values obtained provide better results as compared to natural cultivation.en_US
dc.language.isoenen_US
dc.publisherSensorsen_US
dc.subjectIoT; saffron; sensors; precision agriculture; smart farming; hydroponics; NFTen_US
dc.titleMonitoring ambient parameters in the IoT precision agriculture scenario: An approachto sensor selection and hydroponic saffron cultivationen_US
dc.typeArticleen_US
Appears in Collections:School of Engineering & Technology

Files in This Item:
File Description SizeFormat 
Monitoring_Ambient_Parameters_in_the_IoT_Precision.pdf9.01 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.