Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1399
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, S
dc.contributor.authorDey, S
dc.contributor.authorKumar, D
dc.date.accessioned2024-04-15T10:32:27Z
dc.date.available2024-04-15T10:32:27Z
dc.date.issued2019-10
dc.identifier.urihttp://hdl.handle.net/123456789/1399
dc.description.abstractThis paper addresses the problems of frequentist and Bayesian estimation for the unknown parameters of generalized Lindley distribution based on lower record values. We first derive the exact explicit expressions for the single and product moments of lower record values, and then use these results to compute the means, variances and covariance between two lower record values. We next obtain the maximum likelihood estimators and associated asymptotic confidence intervals. Furthermore, we obtain Bayes estimators under the assumption of gamma priors on both the shape and the scale parameters of the generalized Lindley distribution, and associated the highest posterior density interval estimates. The Bayesian estimation is studied with respect to both symmetric (squared error) and asymmetric (linear-exponential (LINEX)) loss functions. Finally, we compute Bayesian predictive estimates and predictive interval estimates for the future record values. To illustrate the findings, one real data set is analyzed, and Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and prediction.en_US
dc.language.isoenen_US
dc.titleStatistical inference based on generalized Lindley record valuesen_US
Appears in Collections:School of Basic Sciences

Files in This Item:
File Description SizeFormat 
Statistical_inference_based_on_generalized_Lindley_record_values[1].pdf1.84 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.