Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/1660
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ahmed, B | - |
dc.contributor.author | Haque, M | - |
dc.contributor.author | Kumar, D | - |
dc.contributor.author | Rai, A | - |
dc.date.accessioned | 2024-10-14T07:13:07Z | - |
dc.date.available | 2024-10-14T07:13:07Z | - |
dc.date.issued | 2023-01 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/1660 | - |
dc.description.abstract | The impact of climate change has been alarming for the crop growth. The extreme weather conditions can stress the crops and reduce the yield of major crops belonging to Poaceae family too, that sustains 50% of the world’s food calorie and 20% of protein intake. Computational approaches, such as artificial intelligence-based techniques have become the forefront of prediction-based data interpretation and plant stress responses. In this study, we proposed a novel activation function, namely, Gaussian Error Linear Unit with Sigmoid (SIELU) which was implemented in the development of a Deep Learning (DL) model along with other hyper parameters for classification of unknown abiotic stress protein sequences from crops of Poaceae family. To develop this models, data pertaining to four different abiotic stress (namely, cold, drought, heat and salinity) responsive proteins of the crops belonging to poaceae family were retrieved from public domain. It was observed that efficiency of the DL models with our proposed novel SIELU activation function outperformed the models as compared to GeLU activation function, SVM and RF with 95.11%, 80.78%, 94.97%, and 81.69% accuracy for cold, drought, heat and salinity, respectively. Also, a web-based tool, named DeepAProt (http://login1.cabgrid. res.in:5500/) was developed using flask API, along with its mobile app. This server/App will provide researchers a convenient tool, which is rapid and economical in identification of proteins for abiotic stress management in crops Poaceae family, in endeavour of higher production for food security and combating hunger, ensuring UN SDG goal 2.0. | en_US |
dc.title | DeepAProt: Deep learning based abiotic stress protein sequence classification and identification tool in cereals | en_US |
Appears in Collections: | School of Interdisciplinary & Applied Sciences |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
DeepAProt Deep learning based abiotic stress protein sequence classification and identification tool in cereals.pdf | 3.89 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.