Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/955
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKajla, Arun-
dc.date.accessioned2023-04-24T05:00:28Z-
dc.date.available2023-04-24T05:00:28Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/123456789/955-
dc.description.abstractIn this note, we derive some approximation properties of the generalized Bernstein-Kantorovich-type operators based on two nonnegative parameters consid- ered by A. Kajla [Appl. Math. Comput. 2018]. We establish a Voronovskaja-type asymptotic theorem for these operators. The rate of convergence for differential func- tions whose derivatives are of bounded variation is also derived. Finally, we show the convergence of the operators to certain functions by illustrative graphics using Mathe- matica software.en_US
dc.language.isoenen_US
dc.publisherAfrika Matematikaen_US
dc.subjectApproximation; Bernstein-Kantorovich type operators; convergence.en_US
dc.titleGeneralized Bernstein–Durrmeyer operators of blending typeen_US
dc.typeArticleen_US
Appears in Collections:School of Basic Sciences

Files in This Item:
File Description SizeFormat 
GENERALIZED BERNSTEIN-KANTOROVICH OPERATORS OF.pdf245.76 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.